Introdução à Filosofia da Mecânica Quântica A Formulação via Espaços de Hilbert

Décio Krause

https://sites.google.com/view/krausedecio deciokrause@gmail.com

23 Setembro 2025

Introdução à Filosofia da Mecânica Quân

1/61

Esquema do minicurso

- Aula 01 09 Set Apresentação: ideias básicas. (Slides no site da ABF)
- Aula 02 23 Set Uma formulação da MQ usando espaços de Hilbert.
- Aula 03 07 Out Alguns experimentos cruciais: Stern-Gerlach, Mach-Zehnder, o gato de Schrödinger, dupla fenda, HOM, etc.
- Aula 04 21 Out Algumas interpretações: Copenhague, Bohm, Muitos Mundos.

Introdução à Filosofia da Mecânica Quân

Aula 05 – 04 Nov – Lógica, filosofia e pseudo-ciência.

Referências



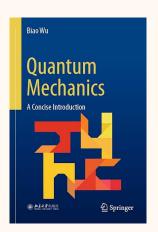


Figure: Krause 2016 (https://issuu.com/nel.rumos/docs/rumos15), Wu 2020

- Denominamos de Teoria Quântica (TQ) um grupo de teorias que envolvem:
 - A MQ ou Mecânica Quântica não relativista
 - A MQR ou Mecânica Quântica relativista (envolvendo a Relatividade Restrita)
 - Outras teorias associadas, como o Modelo Padrão da Física de Partículas.
 - Todas, com exceção da primeira, são teorias de campos
 - Ficaremos com a MQ
- Há vários modos de formular a MQ: via Espaços de Hilbert (que adotaremos), via Integrais de Caminho, etc.
- Espaço de Hilbert Conceito criado por John von Neumann em 1932 a partir da generalização de certos espaços que eram estudados por Hilbert.

MATHEMATICAL FOUNDATIONS of QUANTUM MECHANICS

New Edition

JOHN Von Neumann

tited by NICHOLAS A. WHEELER

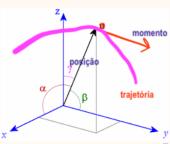
(a) 1932

(b) 2018

A Mecânica Clássica

Como antes, detalhes em Aspectos da Física Clássica

- O principal interesse recai sobre o estado do sistema físico.
- O estado de um sistema físico é descrito por um vetor no \mathbb{R}^6 , denominado de espaço de fases, da forma $p=(q_1,q_2,q_3,p_1,p_2,p_3)$ ou $p=(\mathbf{q},\mathbf{p})$, onde os q_i são as coordenadas de posição do "ponto" p e os p_i são as coordenadas de momento.
- Para um sistema com N sistemas, os estados habitam o espaço euclidiano \mathbb{R}^{6N} .



Observáveis

- Observáveis expressam aquilo que pode ser medido em um sistema em certo estado, como **posição**, **momento**, **energia cinética**, etc.
- São funções que associam conjuntos de pontos do espaço de fases a números reais. Dado um desses conjuntos, A, e um observável f, o número real f(p), com p ∈ A, é interpretado como sendo o valor da medida do observável f para o sistema p.
- As equações de Newton fornecem o modo como os estados variam no tempo, e cada ponto p descreve uma trajetória no espaço de fases.
- A evolução é **determinista**: dadas as condições iniciais para um tempo t_0 , ou seja, dado p=(q(t),p(t)), pode-se determinar com precisão (dependendo dos aparelhos de medida) a posição do ponto em qualquer outro tempo $t \neq t_0$.

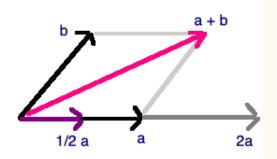
A Mecânica Quântica

 Os estados de um sistema físico são descritos por vetores em um Espaço de Hilbert (detalhes são deixados de lado).

David Hilbert (1862-1943)

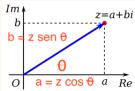
Espaços de Hilbert

- Os vetores são denotados por (notação de Dirac) $|\psi\rangle$, $|\phi\rangle$, etc. (ditos kets)
- Vetores podem ser somados ou multiplicados por uma constante:



Espaços de Hilbert

- Vetores que diferem por uma fase denotam o mesmo estado: $|\psi\rangle$ e $e^{i\theta}\,|\psi\rangle$, sendo $i=\sqrt{-1}$ a unidade imaginária.
- $e^{i\theta} = \cos \theta + i \sin \theta$
- Números complexos da forma z = x + iy entram essencialmente na MQ.
- Não parece possível desenvolver a MQ somente com números reais.
- Para os fenômenos ondulatórios, os números complexos simplificam muito.



Por que números complexos?

Como veremos, a evolução do vetor de estado, descrito pela função de onda $|\psi(x,t)\rangle$ é dado pela Equação de Schrödinger (ES)

$$i\hbar \frac{\partial \ket{\psi(x,t)}}{\partial t} = \mathsf{H}\ket{\psi(x,t)}$$

- O número complexo i entra necessariamente na descrição dada pela MQ.
- h é a constante de Planck e $\hbar = \frac{h}{2\pi}$ é a constante reduzida de Planck.
- ES unidimensional:

$$i\hbar |\psi(x,t)\rangle = -\frac{\hbar^2}{2m} \frac{\partial^2 |\psi(x,t)\rangle}{\partial x^2} + V(x,t) |\psi(x,t)\rangle.$$

• Não se aplica para partículas com m=0, como fótons. Para eles, a MQ relativista.

Décio Krause https://sites.goog/introducão à Filosofia da Mecânica Quân 23 Setembro 2025 11/61

O Hamiltoniano

Como veremos, a evolução do vetor de estado, descrito pela função de onda $|\psi(x,t)\rangle$, é dada pela Equação de Schrödinger (ES)

$$i\hbar \frac{\partial |\psi(x,t)\rangle}{\partial t} = \left(-\frac{\hbar^2}{2m}\frac{\partial^2}{\partial x^2} + V(x,t)\right)|\psi(x,t)\rangle.$$

O Hamiltoniano é

$$H = -\frac{\hbar^2}{2m} \frac{\partial^2}{\partial x^2} + V(x, t).$$

Introdução à Filosofia da Mecânica Quân

Décio Krause

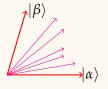
Vetores e superposições

- \mathcal{V} : conjunto de **vetores**, $|\psi\rangle$, $|\phi\rangle$, . . .
- K é um corpo cujos elementos são os escalares, aqui sempre C:
 a, b, ...
- Há uma adição de vetores, nos dando $\alpha + \beta$, etc.
- Há uma multiplicação de vetor por escalar, dando aα, . . .
- Podemos fazer **combinações lineares** de vetores (ou superposições): $a\alpha + b\beta$, etc.

- Notação de Dirac: $|\alpha\rangle$, $|\psi\rangle$, etc., ditos **kets**.
- ullet Exemplo: $|\psi
 angle=rac{1}{\sqrt{3}}\,|\psi_1
 angle+rac{2}{\sqrt{3}}\,|\psi_2
 angle$.

Diferenças

• No caso clássico, podemos ter um *continuum* de valores possíveis para $|\psi\rangle=a\,|\alpha\rangle+b\,|\beta\rangle$, dependendo dos valores de a e de b:



- No caso quântico, teremos somente dois valores: ou $|\alpha\rangle$ ou $|\beta\rangle$.
- Quanto de uma medição, o vetor de estado $|\psi\rangle$ colapsa em um ou em outro.
- $a\ket{\alpha}+b\ket{\beta}\Rightarrow\ket{\alpha}$ ou $\ket{\beta}$, tais que $|a|^2+|b|^2=1$ (normalização).
- E só teremos uma probabilidade de ser um caso ou outro, nunca certeza.
- As probabilidades não são a medida de nossa ignorância, mas entram de modo essencial.

Produtos, norma, ortogonalidade

• **Produto interno** Entre $|\psi\rangle$ e $|\phi\rangle$:

$$\langle \psi | \phi \rangle$$

("brackets") (é um escalar). Se $\langle \psi | \phi \rangle =$ 0, os vetores são ortogonais.

Separar entre 1 e 2, entre o que está no bra e o que está no ket:

- Propriedades: (números complexos)
 - $\langle \alpha + \gamma | \beta \rangle = \langle \alpha | \beta \rangle + \langle \gamma | \beta \rangle$
 - $\langle a\alpha|\beta\rangle = a\langle \alpha|\beta\rangle$
 - $\langle \alpha | b\beta \rangle = \overline{b} \langle \alpha | \beta \rangle$ (complexo conjugado: b = x + yi, $\overline{b} = x yi$).

Introdução à Filosofia da Mecânica Quân

- $\langle \alpha | \beta \rangle = \overline{\langle \beta | \alpha \rangle}$ (complexo conjugado)
- $\langle \alpha | \alpha \rangle \geq 0$ e $\langle \alpha | \alpha \rangle = 0$ see $\alpha = O$ (vetor nulo).

◆□ > ◆□ > ◆ □ > ◆ □ > ◆ □

Exemplos importantes

• Produto interno **canônico** sobre o \mathbb{R}^2 : sendo $\alpha=(x_1,y_1)$ e $\beta=(x_2,y_2)$, temos

$$\langle \alpha | \beta \rangle = x_1 x_2 + y_1 y_2.$$

• Produto interno canônico sobre o \mathbb{C}^2 : sendo $\alpha = (x_1, y_1)$ e $\beta = (x_2, y_2)$ (números complexos), temos

$$\langle \alpha | \beta \rangle = \overline{x_1} x_2 + \overline{y_1} y_2.$$

• Onde $\overline{x} = a - bi$ se x = a + bi.

Produtos

• Norma (ou comprimento) de um vetor α escrito $\| \alpha \|$,

$$\parallel \alpha \parallel = \sqrt{\langle \alpha | \alpha \rangle}$$

- Vetor unitário: $\parallel \alpha \parallel = 1$; α e β são ortonormais se forem ortogonais e unitários.
- Produto tensorial Entre espaços vetoriais $\mathcal V$ e $\mathcal W$, escrito $\mathcal V\otimes\mathcal W$.
- Seus vetores são da forma $\alpha \otimes \beta$, com $\alpha \in \mathcal{V}$ e $\beta \in \mathcal{W}$
- Notação de Dirac: $|\alpha\rangle\otimes|\beta\rangle$, ou $|\alpha\rangle\,|\beta\rangle$ ou ainda $|\alpha,\beta\rangle$

17 / 61

Décio Krause 11105: //SILES.8008 Introdução à Filosofia da Mecânica Quân 23 Setembro 2025

Base e dimensão

- Uma base para V é um conjunto de vetores tal que (1) todo vetor de V é combinação linear de seus vetores (eles geram o espaço) e (2) nenhum deles é combinação linear dos demais (são linearmente independentes). A dimensão do espaço é o cardinal de uma de suas bases (todas têm o mesmo número de elementos).
- Exemplo: \mathbb{R}^2
- ullet Uma base (a "canônica") é formada por $|e
 angle_1=inom{1}{0}$ e $|e
 angle_2=inom{0}{1}$
- Qualquer vetor $|\psi\rangle=\begin{pmatrix}c_1\\c_2\end{pmatrix}$ pode ser escrito como uma combinação linear (superposição): $|\psi\rangle=c_1\begin{pmatrix}1\\0\end{pmatrix}+c_2\begin{pmatrix}0\\1\end{pmatrix}=\sum_{i=1}^2c_i\,|e\rangle_i.$

Décio Krause | 11105: / SILES, goog Introdução à Filosofia da Mecânica Quân 23 Setembro 2025 18 / 61

Base e dimensão

- Se V tem produto interno, há bases ortogonais e bases ortonormais; essas serão importantes depois.
- Seja $\mathcal{B} = \{ |\alpha_1\rangle, |\alpha_2\rangle, \dots, |\alpha_n\rangle \}$ base ortonormal para \mathcal{V} . Se $\beta \in \mathcal{V}$, existem escalares c_1, c_2, \dots, c_n tais que

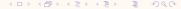
$$|\beta\rangle = \sum_{i=1}^{n} c_i |\alpha_i\rangle$$
.

$$\langle \alpha_i | \alpha_j \rangle =$$

$$\begin{cases} \delta_{ij} \\ \text{ose } i = j \\ \text{ose } i \neq j \end{cases}$$
delta de Kronecker

• É fácil ver que $c_i = \langle \alpha_i | \beta \rangle$, logo

$$|\beta\rangle = \sum_{i=1}^{n} \langle \alpha_i | \beta \rangle | \alpha_i \rangle.$$
 (1)



Notação

$$|arphi
angle = egin{pmatrix} x \ y \ z \end{pmatrix}$$
 (ket) $\langle \psi | = egin{pmatrix} \overline{a} & \overline{b} & \overline{c} \end{pmatrix}$ (bra)

 \overline{x} é o conjugado de x.

Décio Krause

Produto linha \times coluna:

$$\langle \psi | \varphi \rangle = (\overline{a}, \overline{b}, \overline{c}) \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \overline{a}x + \overline{b}y + \overline{c}z$$

$$\langle \varphi | \varphi \rangle = (\overline{x}, \overline{y}, \overline{z}) \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \overline{x}x + \overline{y}y + \overline{z}z = |x|^2 + |y|^2 + |z|^2 = \|\varphi\|^2$$

Operadores lineares

- Um **operador linear** sobre $\mathcal V$ é uma função $\mathcal T:\mathcal V\to\mathcal V$ tal que:
 - $T(\alpha + \beta) = T(\alpha) + T(\beta)$
 - $T(a\alpha) = aT(\alpha)$
- Os operadores são representados (relativamente a uma base) por matrizes. Pode-se confundi-los com elas.
- Exemplos notáveis:
 - Operador ortogonal (sobre $\mathcal V$ real com produto interno): é um operador linear $\mathcal T$ tal que $\|\mathcal T|\psi\rangle\|=\|\psi\|$, para todo $|\psi\rangle$.
 - \bullet $\mbox{\bf Operador unitário}:$ o mesmo só que sobre ${\cal V}$ complexo.
 - Se A é matriz de T ortogonal, $A^{-1} = A^T$ (transposta de A) e se T é unitário, $A^{-1} = A^*$ (transposta conjugada).
 - Se $A = A^*$, então T é **hermitiano**.
 - Na MQ, os observáveis físicos são representados por operadores hermitianos.

Informações gerais

- Na física clássica, conhecer o estado de um sistema (posição e momento em um dado tempo) permite conhecer tudo o que é necessário para determinar o estado do sistema em qualquer outro instante de tempo.
- Na MQ, n\u00e3o h\u00e1 uma completa predizibilidade. Conhecer o estado de um sistema significa conhecer o m\u00e1ximo que podemos saber sobre como o sistema foi preparado.
- (Mais à frente discutiremos essa impredizibilidade e as hipóteses feitas a respeito.)
- Tudo o que a teoria nos fornece são probabilidades, não como medida da nossa ignorância (física clássica), mas de modo essencial: é o que temos e é o que podemos alcançar.

- \bullet (AXIOMA I) A cada sistema físico σ associamos um espaço de Hilbert \mathcal{H}_{σ} (a referência a σ ficará em geral implícita).
- Os estados de σ são descritos por vetores (em geral unitários) de \mathcal{H}_{σ} .
- Se $|\psi\rangle$ e $|\phi\rangle$ denotam estados de σ , então qualquer combinação linear $a | \psi \rangle + b | \phi \rangle$ também denota um estado, com a e b números complexos.
- Uma coisa importante: **nunca mais** falaremos dos sistemas físicos, mas só de seus estados e dos observáveis, além de probabilidades e outras coisas.

Introdução à Filosofia da Mecânica Quân

 A referência aos sistemas físicos e à sua natureza vêm com as interpretações, das quais falaremos.

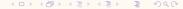
Primeiro AXIOMA, cont.

- (AXIOMA I') Para sistemas compostos de N quanta, o espaço de Hilbert é o **produto tensorial** dos espaços de cada sistema: $\mathcal{H} = \mathcal{H}_1 \otimes \mathcal{H}_2 \otimes \cdots \otimes \mathcal{H}_N$
- Os vetores de \mathcal{H} são **kets** da forma $|\psi_1\rangle |\psi_2\rangle \dots |\psi_N\rangle$ ou somente $|\psi_1, \psi_2, \dots, \psi_N\rangle$, omitindo os ' \otimes '.
- Se os sistemas forem todos indiscerníveis, então $\mathcal{H}_i = \mathcal{H}_i$.
- Exemplo Para os dois elétrons de um átomo de He (estado fundamental):

$$\ket{\psi_{12}} = rac{1}{\sqrt{2}} \Big(\ket{\psi_1^{\uparrow}} \ket{\psi_2^{\downarrow}} - \ket{\psi_1^{\downarrow}} \ket{\psi_2^{\uparrow}} \Big)$$

Emaranhamento

- Schrödinger 1935 "A" característica distintiva da MQ, sem análogo na MC.
- 2 Dois sistemas #1 e #2, cujos estados estão nos H-espaços \mathcal{H}_1 e \mathcal{H}_2 .
- $oldsymbol{0}$ Os estados do sistema conjunto #1 está no espaço $\mathcal{H}=\mathcal{H}_1\otimes\mathcal{H}_2$
- $|\psi_{12}\rangle = N\Big(|\psi_1\rangle\otimes|\psi_2\rangle\pm|\psi_2\rangle\otimes|\psi_1\rangle\Big)$ (o produto tensorial não é comutativo); N= fator de **normalização**.
- Não é possível decompor este estado em um vetor em cada espaço.
- Só podemos conhecer as propriedades do todo, de #1 e não de cada sistema em isolado: holismo.



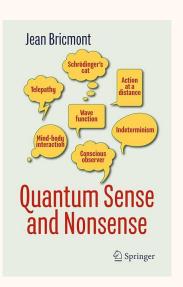
Emaranhamento, holismo

Não é possível atribuir propriedades para os sistemas isoladamente *antes* de uma medição. Só o sistema **todo** tem propriedades.

Estado do sistema 1: $|\psi\rangle_1$ Estado do sistema 2: $|\psi\rangle_2$ Estado do sistema conjunto: emaranhado, sem possibilidade de *fatorização* $|\psi\rangle_{12}=\alpha\,|\psi\rangle_1+\beta\,|\psi\rangle_2$

Décio Krause https://sites.goog/Introdução à Filosofia da Mecânica Quân 23

Jean Bricmont



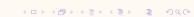
Extrato do conteúdo

- 11 The Cultural Impact of Quantum Mechanics
- 2 11.2 Quantum Mechanics and Pseudo-science
- 11.3 Quantum Mechanics and Eastern Mysticism
- 4 11.4 Quantum Mechanics and God
- **11.5 Quantum Mechanics and Philosophy**
- 11.5.1 Quantum Mechanics and the "Mind-Body Problem"
- 11.5.2 Quantum Mechanics and "Positivism"
- 11.5.3 Quantum Mechanics and "Postmodernism"
- 11.6 Quantum Mechanics, Ideology and Politics
- 11.6.1 Quantum Mechanics and Marxism
- 11.6.2 Quantum Mechanics and the Cold War Mentality
- 11.7 'Abuses' of Quantum Mechanics in the Human Sciences
- 11.8 A Plea for Modesty and for a Separation of Domains

Explicação física

• Spin na direção z para férmions com idênticas probabilidades: $|\psi_{12}\rangle = \frac{1}{\sqrt{2}} \left(\left| \psi_1^{\uparrow} \right\rangle \left| \psi_2^{\downarrow} \right\rangle - \left| \psi_1^{\downarrow} \right\rangle \left| \psi_2^{\uparrow} \right\rangle \right)$

- Para uma dada direção, a propriedade spin assume um dentre dois valores: UP (↑) ou DOWN (↓).
- Esse vetor está dizendo que, previamente a uma medição de spin, o sistema se encontra no estado $|\psi_{12}\rangle$, que é uma **superposição** (emaranhamento) de estados.
- Como veremos mais abaixo, quando uma medição é realizada, esse vetor **colapsa** (AXIOMA 5) em um dos estados componentes, ou $\left|\psi_{1}^{\uparrow}\right\rangle\left|\psi_{2}^{\downarrow}\right\rangle$ ou $\left|\psi_{1}^{\downarrow}\right\rangle\left|\psi_{2}^{\uparrow}\right\rangle$
- E só então poderemos saber como está o spin de cada sistema.
- Como $\frac{1}{\sqrt{2}}$ multiplica ambos os estados, cada um deles poderá ocorrer com probabilidade $|\frac{1}{\sqrt{2}}|^2 = \frac{1}{2}$, ou 50%.



Décio Krause https://sites.goog Introdução à Filosofia da Mecânica Quân 23 Setembro 2025 30 / 61

Segundo AXIOMA

• **Definição:** Um vetor $|\psi\rangle$ é um autovetor de um operador T se ele se transforma em um múltiplo escalar dele mesmo, ou seja, existe um escalar λ tal que

$$T |\psi\rangle = \lambda |\psi\rangle$$
.

- ullet O escalar λ é dito ser um autovalor de T associado ao autovetor $|\psi
 angle$.
- (AXIOMA II) Cada propriedade física A (energia, posição, momento, spin), chamada de observável, é representada por um operador hermitiano \hat{A} sobre \mathcal{H} . Os autovalores de \hat{A} (que são números reais) são os valores possíveis de serem obtidos em uma medição da propriedade física para o sistema no estado $|\psi\rangle$.
- ullet O conjunto desses autovalores é chamado de espectro de T.

Um exemplo: spin

- O spin é um tipo de momento angular de um sistema quântico. Pode ser medido sempre em uma dada direção e os valores alcançáveis são sempre um ou outro.
- Geralmente adota-se a direção z como referência, assim temos σ_z , que pode ser $|\uparrow\rangle$ (UP) ou $|\downarrow\rangle$ (DOWN).
- Na direção x, temos σ_x que pode ser $\langle \leftarrow \rangle$ (LEFT) ou $|\rightarrow \rangle$ (RIGHT).
- Similarmente em outras direções.
- **Definimos** Denotamos por σ_d o operador que "mede" o spin do sistema na direção d. Então

$$\sigma_z \ket{\uparrow} = \ket{\uparrow}$$
 e $\sigma_z \ket{\downarrow} = -\ket{\downarrow}$

• O espectro: $\sigma_{z} = \{1, -1\}.$

Espectro contínuo

- Há operadores que têm um espectro contínuo, como posição, momento e energia.
- Vamos para espaços de Hilbert modificados (rigged).
- Nesse caso, substituímos \sum por \int : por exemplo,

$$\langle \varphi | \psi \rangle = \int_{-\infty}^{\infty} \varphi^*(x) \psi(x) dx.$$

- $\varphi^*(x)$ é a conjugada complexa de $\psi(x)$.
- Ficaremos restritos ao caso finito.

A função de onda $|\psi\rangle$

- A função de onda é um elemento chave na formulação da MQ. Ela descreve o estado de um sistema físico quântico, que pode ser composto por muitos sistemas e assume-se que ela fornece toda a informação que se pode ter sobre o tal estado.
- Ela pode ser representada por um vetor $|\psi\rangle$ ou $|\psi(x,t)\rangle$ de um espaço de Hilbert (em geral) a infinitas dimensões.
- Está presente na Equação de Schrödinger

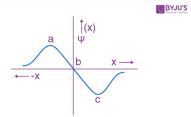
$$i\hbar \frac{\partial \ket{\psi}}{\partial t} = H\ket{\psi}.$$

A função de onda $|\psi\rangle$

 Para uma partícula de massa m deslocando-se na direção do eixo x, a equação é

$$i\hbar\frac{\mathrm{d}\left|\psi(x,t)\right\rangle}{\mathrm{d}t}=-\frac{\hbar^{2}}{2m}\frac{\partial^{2}\left|\psi(x,t)\right\rangle}{\partial x^{2}}\left|\psi(x,t)\right\rangle+V(x,t)\left|\psi(x,t)\right\rangle.$$

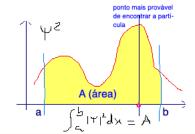
- Repare que não podemos ter m=0, logo a equação não se aplica a partículas sem massa, como fótons.
- Esses são tratados na MQR (relativista).



Décio Krause https://sites.goog Introdução à Filosofia da Mecânica Quân

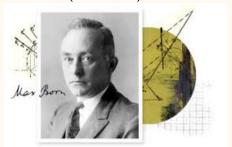
O quadrado da função de onda

- O seu quadrado, |ψ|² foi interpretado por Born como indicando a probabilidade de encontrarmos o sistema no ponto x no instante t.
 O ponto de máximo em [a, b] é onde é mais provável que a partícula esteja.
- Mas cuidado: um sistema quântico não tem posição bem definida (Copenhague).



Max Born

Max Born (1882-1970), Nobel 1954.



Professor de Heisenberg, Pauli, Jordan e outros. Um dos formuladores da mecânica de matrizes (inventada por Heisenberg). Responsável pela interpretação do quadrado da função de onda, $|\psi|^2$.

Introdução à Filosofia da Mecânica Quân

Avô de Olivia Newton-John.

Olivia Newton-John

(1948-2022)

Terceiro AXIOMA

• (AXIOMA III) - Regra de Born Dado

$$|\psi\rangle = \sum_{i=1}^n c_i |\alpha_i\rangle$$
.

com $\{lpha_i\}$ uma base ortonormal e sendo $\hat{A}\ket{lpha_i}=\lambda_i\ket{lpha_i}$, então

$$Prob_A^{|\psi\rangle} = \sum_{j|\lambda_i = \lambda_j} |c_i|^2 = \sum_{j|\lambda_i = \lambda_j} |\langle \alpha_i | \psi \rangle|^2.$$

• No caso não degenerado (todos os λ_i são distintos), temos

$$Prob(\lambda_i)_A^{|\psi\rangle} = |c_i|^2 = |\langle \alpha_i | \psi \rangle|^2.$$

Valor esperado

- Praticamente nunca o cientista realiza uma só medição, mas várias (até centenas) delas.
- Há que se encontrar uma espécie de média dos resultados alcançados, e isso é feito por meio da esperança matemática ou valor esperado.
- No nosso caso, o valor esperado da medida do observável A para o sistema no estado $|\psi\rangle$ é:

$$\langle A
angle_{|\psi\rangle} = \langle \psi | \hat{A} | \psi
angle$$
,

que é o produto interno de $|\psi\rangle$ por $\hat{A}|\psi\rangle$.

Quarto AXIOMA

 (AXIOMA IV) - Evolução A evolução do estado de um sistema quântico é determinista e descrita pela equação de Schrödinger.

$$i\hbar rac{\partial \ket{\psi}}{\partial t} = \mathbf{H}\ket{\psi}$$
 ,

onde **H** é um operador linear, o **Hamiltoniano**, que descreve a energia do sistema.

Quinto AXIOMA: indeterminismo

 (AXIOMA V) - Colapso Via de regra, o estado de um sistema está descrito por uma superposição de estados, da forma

$$|\psi\rangle = a_1 |\psi_1\rangle + a_2 |\psi_2\rangle + \ldots + a_i |\psi_i\rangle + \ldots$$

Quando uma medição de algum observável A é feita, temos

$$\hat{A} |\psi\rangle = \hat{A}(a_1 |\psi_1\rangle + a_2 |\psi_2\rangle + \ldots + a_i |\psi_i\rangle + \ldots)$$

e acontece o **colapso** do vetor $|\psi\rangle$ para um dos seus **auto-estados** $|\psi_i\rangle$:

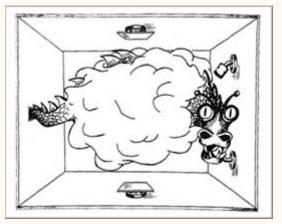
$$|\psi\rangle \implies |\psi_i\rangle$$

com probabilidade $|a_i|^2$. Tudo o que a teoria fornece são as probabilidades do estado entrar em algum auto-estado: só podemos conjecturar, não podemos assertar. (Roger Penrose, Nobel em Física, 2020).

Um exemplo

Experimento das duas fendas com um só elétron: onde ele vai 'bater' no anteparo? Não dá para saber; tudo o que temos são as probabilidades, e saberemos somente quando ele chegar ao anteparo.

O dragão de fumaça



John Archibald Wheeler (1911-2008): É possível ver a cauda, a fonte das partículas, e a cabeça, que são os resultados da medição. No meio, todo o corpo está coberto de fumaça. E essa fumaça não pode ser removida: somente a medição define o fenômeno, e não o contrário.

Décio Krause | ITTPS://SITES.goog Introdução à Filosofia da Mecânica Quân 23 Setembro 2025 44/61

- O spin, uma espécie de momento angular, foi descoberto em 1922 (Stern e Gerlach, experimento não explicável, apenas que havia um efeito de assumir um dentre dois valores devido ao efeito magnético) e 1925 (Uhlenbeck e Goudsmit propuseram a existência de um momento angular intrínseco, ou spin). Veremos isso na próxima aula.
- 2 O spin é quantizado. Quando medido em uma direção, pode assumir somente um dentre dois valores: U (UP) ou D (DOWN), 0 ou 1, L (LEFT) ou R (RIGHT), etc.
- Não é possível medir o spin em duas direções distintas de uma só vez.
- **1** Os **observáveis** S_z e S_x não comutam.
- O fato de que há observáveis que não comutam origina uma das críticas à lógica clássica.

Introdução à Filosofia da Mecânica Quân

Vamos explicar (mais sobre lógica na última aula).

Falha da distributividade

Uma das leis básicas da lógica clássica (Booleana): a distributividade de ∧ com relação a ∨:

$$a \wedge (b \vee c) = (a \wedge b) \vee (a \wedge c)$$

- 3 Suponha que medimos S_z e achamos UP.
- 1 Não podemos medir na direção x, mas sabemos que $S_x = UP$ ou que $S_{x} = DOWN$. Ou seja,

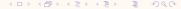
- Apliquemos a distributividade:

Falha da distributividade

- 2 Apliquemos a distributividade:
- Analogia com números: distributividade da multiplicação relativa à adição.

$$a \times (b+c) = (a \times b) + (a \times c)$$

- **5** Só que Nem $(S_z(U) \wedge S_x(U))$ e nem $(S_z(U) \wedge S_x(D))$ podem ser obtidos.
- A lei distributiva falha!
- Isso levou Garreth Birkhoff e John von Neumann a sugerirem (1936) que a lógica subjacente à MQ não poderia ser a clássica, originado o campo das lógicas quânticas.



- Situação que bem ilustra o uso da matemática.
- O experimento das duas fendas.

Suposições:

- $\wp(A|B) = \frac{\wp(A \land B)}{\wp(B)}$ (probabilidade condicional de A dada a probabilidade de B)
- $\wp(A1 \lor A2) = 1$ (passou por uma das fendas).

Décio Krause

- $\wp(A \cup B) = \wp(A) + \wp(B) \wp(A \cap B)$, com $\wp(A \cap B) = 0$ se $A \in B$ forem eventos independentes (como é o caso).
- **2** Isto é, $\wp(A1 \cap A2) = 0$

- **5** Aplica a lei distributiva: $a \wedge (b \vee c) = (a \wedge b) \vee (a \wedge c)$

- $\wp(A \cup B) = \wp(A) + \wp(B) \wp(A \cap B)$, com $\wp(A \cap B) = 0$ se $A \in B$ forem eventos independentes (como é o caso).
- **2** Isto é, $\wp(A1 \cap A2) = 0$

- **5** Aplica a lei distributiva: $a \wedge (b \vee c) = (a \wedge b) \vee (a \wedge c)$

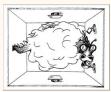
- **③** $\wp(R \land A1) = \wp(R|A1) \times \wp(A1)$, de (1) da definição de probabilidade condicional: $\wp(A|B) = \frac{\wp(A \land B)}{\wp(B)}$, logo $\wp(A \land B) = \wp(A|B)\wp(B)$

- ② Como $\wp(A1)=\wp(A2)$, então $\wp(A1)+\wp(A2)=2\wp(A1)=2\wp(A2)$

- Esse raciocínio clássico não se aplica à MQ. A lei distributiva não vale.
- **②** A passagem $\wp(R|A1 \lor A2) = \frac{\wp(R \land (A1 \lor A2))}{\wp(A1 \lor A2)} = \frac{\wp((R \land A1) \lor (R \land A2))}{\wp(A1 \lor A2)}$ não é lícita.

Interpretação

- $\wp(R|A1 \lor A2) = \frac{1}{2}\wp(R|A1) + \frac{1}{2}\wp(R|A2)$
- A derivação é inválida na MQ.
- O valor de $\wp(R|A1)$ deveria depender do que ocorre em A2, o que requer uma ação não-local para se saber se A2 está ou não aberta.
- Copenhague: Não tem sentido falar em A1 ∨ A2 olhando isso como indicando que ela vai por um ou por outro slit. A teoria não diz nada sobre isso (dragão de Wheeler). Essas proposições não têm sentido físico.



As matrizes de Pauli

- Problema: como representar algo que pode assumir somente dois valores?
- ② Consideremos o spin de um elétron, m_s , que pode ser $m_s = 1/2$ ou $m_s = -1/2$.
- Qual seria a menor (de menor ordem) matriz que tem esses dois valores como auto-vetores? Uma resposta é:

$$M = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$

- Mas para o espaço tridimensional uma só matriz não basta, pois o vetor que queremos representar tem componentes nos eixos X, Y e Z.
- Há três matrizes que satisfazem essa condição, descobertas por Wolfgang Pauli:

$$\sigma_{x} = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$
, $\sigma_{y} = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}$, $\sigma_{z} = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$.

Décio Krause https://sites.googl/Introdução à Filosofia da Mecânica Quân

Wolfgang Pauli

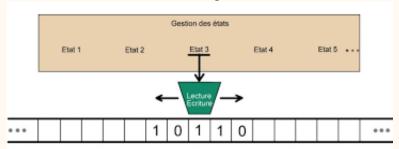
(1900-1958) Discípulo de Bohr, trabalhou com a MQ, responsável pela descoberta do **Princípio de Exclusão**, que lhe deu o Prêmio Nobel em 1945.

Computação quântica

- Inciada nos anos 1980: implementar um computador "clássico" com sistemas quânticos.
- Muita dificuldade em usar computadores clássicos para processar problemas quânticos.
- Sugestão de uma máquina quântica, construída a partir de princípios quânticos.
- 1985 David Deutsch propôs um modelo (abstrato) de um computador quântico, uma máquina de Turing quântica.
- 1994 Peter Shor mostrou que um computador quântico seria muito mais rápido do que um comum. Descobriu como fatorar grandes números inteiros exponencialmente mais mas rápido.
- Atraiu a atenção. Dado um número enorme que é o produto de dois números primos, achar os dois fatores. Quebra de códigos bancários.

Bits

- Na teoria da computação a unidade básica de informação é o bit, que pode ser 0 ou 1.
- **2** Representação binária: $5 = 1.2^0 + 0.2^1 + 1.2^2$, logo 5 = 101. $15 = 1.2^0 + 1.2^1 + 1.2^2 + 1.2^3$, logo 15 = 1111



Meu nome em binário

Décio Krause

Link: Conversor para binário

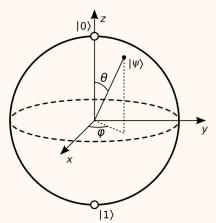
Qubits

- Na computação quântica o esquema é diferente: temos os qubits (quantum bits).
- ② Vamos chamar os dois estados básicos de $|0\rangle$ e $|1\rangle$. Podemos formar outros estados $|\psi\rangle = \alpha \, |0\rangle + \beta \, |1\rangle$, com $|\alpha|^2 + |\beta|^2 = 1$, sendo α e β números complexos (por exemplo, $\alpha = \beta = \frac{1}{\sqrt{2}}$, ou $\alpha = \frac{1}{\sqrt{3}}$ e $\beta = \frac{2}{\sqrt{3}}$).
- **3** Temos então uma enormidade de outras possibilidades, dependendo dos coeficientes α e β .

- Atenção: Isso não quer dizer que o sistema está em todas essas possibilidades ao mesmo tempo.
- Só temos probabilidades.

A esfera de Block

Para representar os qubits: os pontos da esfera (de raio unitário) são superposições dos vetores da base: $|\psi\rangle=\alpha\,|0\rangle+\beta\,|1\rangle$. O vetor pode estar (depois da medição) **aqui** ou **acolá**, cada uma com uma certa probabilidade, mas não em todas as posições de uma vez.



Por que do formalismo?

- A matemática dos egípcios e dos babilônios era bem avançada para problemas práticos.
- 2 Os gregos fizeram um avanço monumental: criaram uma teoria.
- Seconda de Euclides de Alexandria: os Elementos (de geometria).
- Exposição axiomática.
- Em física: 1900 Os 23 Problemas da Matemática (D. Hilbert).
- Sexto problema: levar às outras ciências o que havia sido feito à matemática – tratamento axiomático.
- Idealmente, uma teoria (ciências empíricas) é composta por uma base matemática (um "formalismo") e uma classe de estruturas, os modelos da teoria.
- A base matemática comporta uma lógica subjacente, que determina as espécies de inferência que a teoria considera válidas.

Teorias

- Se queremos entender uma teoria, devemos conhecer seus princípios básicos e como, deles, podemos inferir outros princípios (logo, a sua lógica).
- O método axiomático é o ideal para isso.
- Em geral, assume-se a lógica clássica e uma teoria de conjuntos para expressar todos os conceitos dos quais necessitamos.
- E também para definir os modelos da teoria (que via de regra são conjuntos).
- Vimos os AXIOMAs da MQ, mas há outras formas de formulá-la, várias outras.
- O Ao que tudo indica, todas elas fornecem as mesmas explicações físicas.
- A questão fundamental é entender o que uma teoria como a MQ nos diz sobre o mundo.
- Essa é a questão das interpretações, que veremos na próxima aula.